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Motivation for Modal Analysis

Characterize dynamics of a system under vibrational excitation

_______________
MODE3  'u"

\\7,
SEM Experimental Techniques - February 1998, P. Avitabile

Determine system natural Impact design decisions to
frequencies and mode shapes avoid failure
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Linear vs. Nonlinear Systems

= Linear analysis assumes

= Amplitude independent
modes

= Modes can be superimposed

due to their orthogonali

= Small deformations
= Equation:

ty

Gr + 2(rwrqy + wrzqr = CI)TFext

= Psuedo — Nonlinear analysis
assumes

Linear modes can decouple
nonlinear data

Little to no coupling between
modes

No energy transfer between
modes

Shapes of the linear modes are
preserved

Equation:
Gr + 2(r0r-qy + (UTZCIT + Fo1(qr) qr) = CDTFext

What happens if there is coupling of the modes?
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What is modal coupling?

= When the excitation of one
mode causes a transfer of
energy that perturbs
another mode

= Usually occurs due to
interactions at joints shared
by the different mode
shapes

O CE) % s S CE) % 2
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Objectives

Determine the influences of modal coupling on nonlinear modal
models

Excite different combinations of modes on a nonlinear structure
Experimentally identify the presence modal coupling

Create a reduced order nonlinear modal model to match
experimental results
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Test System

Cylinder — Plate — Beam (CPB)
Plate bolted to cylinder
Beam bolted and glued to plate

18 triaxial + 8 uniaxial accelerometers

332 302 312 322

Uniaxial accelerometers [ Triaxial accelerometers . Drive points
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Experimental Setup
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Experimental Process

‘ FEM Updating

Linear

Low Level
Shaker and
Hammer Testing

—

Curve Fit FRFs

|

Linear Modal
Parameters

Nonlinear

High Level
Shaker Testing

—)

Time Histories

—

Modal Filter

¢—l

Modal Response

—

Hilbert
Transform

=)

Amplitude
Dependent Natural
Freq and Damping
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Linear Experimental Data

= Beam bending modes from low level burst random shaker
and cylinder modes from light hammer hits
= Natural frequencies for model updating and shapes for modal filtering

CPB Burst Random FRF
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Mode 1

Mode Experimental
Description w, (Hz)

1st Beam Bending X 120.8
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Methodology
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Mode 2

Mode Experimental
Description w, (Hz)

1st Beam Bending Y 155.3

Pm-
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Modal Filtering

= Linear mode shapes allow for filtering of physical response

into modal coordinates
Physical Response Physical Response FFT
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Modal Filtering

= Linear mode shapes allow for filtering of physical response
into modal coordinates

Modal Response Modal Response FFT
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Nonlinear Data

= Shaker delivers definable force input — able to create a
voltage signal with specific frequency content

g Shaker Voltage Input - Time Shaker Voltage Input - Freq
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Nonlinear Data
= Use shaker to excite specific modes

«10* CPB Physical Response CPB Modal Response
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Hilbert Analysis

= Requires that each response be uncoupled such that it
can be represented by a SDOF system

= Signal can be represented by a decaying harmonic

"= Re[exp(ybl(t) + iy, (t))]

= Compute Hilbert Transformation (H (t)) for an
amplitude dependent representation of damping and

frequency
diy,
| a) —_— —
da,r dt

. dl/h/w
r
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Hilbert Analysis

Magnitude
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%1073 Damping vs. Velocity Amplitude
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= When excited alone at various levels, frequencies overlay

and damping appears to increase with increasing energy
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%1073 Damping vs. Velocity Amplitude
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= Coupling visible as a frequency and damping shift when

mode 2 is excited to a higher level than mode 1
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«1073 Damping vs. Velocity Amplitude
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= As with Mode 1, when Mode 2 is excited alone, the

frequencies overlay and damping increases with force.
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«1073 Damping vs. Velocity Amplitude
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= See same frequency and damping shift, but now to some
degree in all cases where mode 1 is also excited.
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Model formulation

= Developed high fidelity model accounting for entire system
geometry

= Updated material properties to match system linear
frequencies

Aluminum
Eove 10.23 E+6 psi
Vavg 0.34
Pave 25725
n

25
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Modeling
Contact Area

= Bolted structures exhibit slip at the edge of its contact patch
= This causes hysteresis and an increase in damping

= Primary sources of nonlinearity in the system
= QOpening and closing of the gap between plate and cylinder
= Joints

Red = contact
Blue = not in contact

4.5 -4 -35 -3 25 26
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Contact Area

Pull on bolts with
preload force

Glue bolt threads
to bolt holes

Release preload
force on bolts

Let kinetic energy
dampen out

Red = contact

Blue = not in contact
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Contact Area to Spidering

= Spider elements attached to extracted nodes from contact

area simulation

Cylinder

Spider Element

Plte
28
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Linear Updating

Model Monte Carlo

Test Natural Sim. to get

: Contact :
Frequencies Linear

Area Springs

Mode | Experimental | Updated Model | Percent
fn|HZ] fn[HZ] Error

-

3 548.4 548.7 0.04
4 989.5 967.9 -2.18
I
5 1165.1 1168.8 0.32 6 DOF Linear %m
Spring
6 1165.6 1170.4 0.41
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lwan Parameterization

= Constitutive joint model to describe
metal elasto-plasticity behavior

= Each Iwan Joint is comprised of four

physical parameters —
= kg Force required to cause slip ‘ s Kr. X B ‘
= Kr Joint stiffness when no slip occurs i
=y Exponent describing the slope of

energy — dissipation curve

= f Shape parameter of the energy —
dissipation curve near macroslip

30
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lwan Parameterization

Model directions of slip with Iwan Joints
(Radial and Tangential on Cylinder — Plate Interface)
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lwan Mode 2 IETEEENEESEEFAYE

Radial 2104 2.26E+05 -0.237 5.51
Tangential 0.199  2.15E+12 -0.692 9.37

Mode 2 Frequency Shift
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lwan Mode 2
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lwan Mode 2

25
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o lwan parameters for each
-3 excitation scaled against
o excitation of mode 2
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Closing Remarks

= Mode 2 was found to couple with
mode 1 when both were excited
using a shaker

= Mode 1 showed a lesser degree of
coupling when multiple modes
were excited

= Used a high fidelity model to match
nonlinear experimental data

= Jwan models, though currently
incomplete, depicted the trends
from the Hilbert curves
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Mode 3

Mode Experiment
Description al w,, (Hz)

Long Plate Drum 548.43
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Mode 4

Mode Experiment
Description al w,, (Hz)

2nd Long Beam X 989.47
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Mode 5

Mode Experimental
Description w, (Hz)

Ovalling 1165.1
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Mode 6

Mode Experimental
Description w, (Hz)

Ovalling 1165.6
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